

The H2V Facility delivers dedicated support to hydrogen practitioners via PDA services, the H2V Knowledge Centre and the H2V Platform

The Hydrogen Valleys Facility

Clean Hydrogen Partnership

Project Development Assistance

Provision of dedicated Project Development Assistance (PDA) for Hydrogen Valleys projects towards Final Investment Decision

H2V Knowledge Centre

Sharing & dissemination of knowledge and provision of capacity building for the broader hydrogen community

H2V Platform

Maintenance & extension of the Hydrogen Valley Platform to enhance its positioning as the global onestop-shop for hydrogen flagship projects

Delivery partners

Aspirational targex

Hydrogen Valleys operational/under construction

This document is part of the H2V Knowledge Centre that offers hydrogen practitioners knowledge material in written and interactive formats

The H2V Knowledge Centre

Structure and scope of the H2V Knowledge Centre

Self-service Knowledge **Material**

Interactive Formats

Technical

Regulatory

Valley governance

- Knowledge material specifically developed as part of the H2V Facility project
- Links and information to other third-party resources and material
- Webinars with content experts (Roland Berger, Worley and external speakers)
- Project Development Assistance experience sessions with Hydrogen Valley practitioners

Target audience

Hydrogen Valleys

Project developers

National, regional and local authorities

Investors

Other hydrogen practitioners

Disclaimer

This presentation is for informational purposes only and is not offered as professional advice for any specific matter. Professional advice should always be sought before taking any action or refraining from taking any action based on this presentation.

Roland Berger group of companies ("Roland Berger") and the editors and the contributing authors do not assume any responsibility for the completeness and accuracy of the information contained therein and expressly disclaim any and all liability to any person in respect of the consequences of anything done or permitted to be done or omitted to be done wholly or partly in reliance upon the whole or any part of the presentation.

The presentation may contain links to external websites and external websites may link to the presentation. Roland Berger is not responsible for the content or operation of any such external sites and disclaims all liability, howsoever occurring, in respect of the content or operation of any such external websites.

Key objective of this document is to support Hydrogen Valleys on scouting the most suitable technologies for their project specifics

Key objectives and content of this document

Key objectives

Conduct a technology
assessment of
relevant technologies
for all major components

for all major components of the Hydrogen Valley project

Key content

H₂ value chain assessment

Structured approach to evaluate and prioritize all relevant value chain steps based on their strategic relevance for the Hydrogen Valley and other potentials

Technology scouting

Comprehensive approach to prioritize focus technologies based on a detailed technology analysis considering aspects such as cost reduction and innovation potentials

Partner categorization and partner scouting

Guidance on the identification of potential partner types for focus technologies and on the scouting of potential partners

Source: Roland Berger | 5

To select suitable technologies for key components along the Hydrogen Valley value chain, a thorough 4-step technology assessment is recommended

Technology assessment - overview

Focus of this document 7								
Focus level	H ₂ value chain	Technology	Company types	Specific companies				
Process step	H ₂ value chain assessment	2 Technology scouting	Partner 3 categorization	4 Partner scouting				
Description	Identification of relevant value chain steps	Prioritization of focus technologies based on concrete project setup	Identification of potential partner types for focus technologies	Scouting of potential partners				
Deliverables	High-level analysis with key value chain steps	Detailed analysis with key technologies	List of potential partner categories	Short-list of potential partners				

It is recommended to repeat the technology assessment in regular intervals

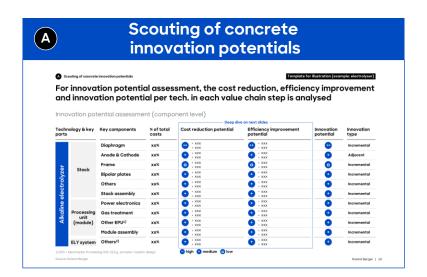
Source: Roland Berger | 6

The technology scouting aims to analyze the most relevant technologies along the value chain and prioritize them based on innovation potential & strategic fit

Technology scouting objective and framework

Objective

- Prioritization of key technologies per selected focus areas based on:
 - Concrete innovation potential per key component
 - Strategic fit
- Identification key enablers per key cost/efficiency lever


Outcome



- Cost reduction and efficiency improvement potentials
- Strategic fit per analyzed technology
- Prioritization of analyzed technology for further analysis

Framework

Source: Roland Berger 1 7

The technology scouting consists of an analysis of the technology readiness level (TRL), cost, efficiency and innovation potential as well as strategic fit

Approach for technology scouting

Value chain step	Technology	TRL ¹⁾	Cost reduction innovation areas	Efficiency impr. innovation areas	Innovation potential	Strategic fit for Hydrogen Valley	Prioritization
0. Process input generation	Alkaline	xx	• XX • XX •	• XX • XX •	•• /• /0	··· / · / · O	Low/medium/high priority
1. Green hydrogen production	PEM	xx	• XX • XX •	• XX • XX •	•• /• /0	•• /• /0	Low/medium/high priority
2. Conv. & storage	SOEC	xx	• XX • XX •	• XX • XX •	•• /• /0	•• /• /0	Low/medium/high priority
	AEM	xx	• XX • XX •	• XX • XX •	•• /• /0	··· / · / · / · O	Low/medium/high priority

1) Technology Readiness Level

••• high ••• medium •• low

The innovation potential assessment takes place for key technologies on a component level - Considering costs and efficiency

Innovation potential assessment (component level)

				Deep div				
Techn parts	ology & key	Key components	% of total costs	Cost reduction potential	Efficiency improvement potential	Innovation potential	Innovation type	
		Diaphragm	Diaphragm xx5	xx%	•/•/• · xxx · xxx	••/•/• · xxx · xxx	•/•/•	Incremental
	Stack	Anode & Cathode	xx%	••/•/• · xxx · xxx	••/•/o · xxx · xxx	•/•/0	Adjacent	
		Frame	xx%	••/•/⊙ · xxx · xxx	••/•/o · xxx · xxx	•/•/0	Incremental	
electrolyzer		Bipolar plates	xx%	••/•/⊙ · xxx · xxx	••/•/• · xxx · xxx	•/•/0	Incremental	
		Others	xx%	••/•/• · xxx · xxx	••/•/• · xxx · xxx	•/•/0	Incremental	
<u>e</u> C		Stack assembly	хх%	••/•/⊙ · xxx · xxx	••/•/• · xxx · xxx	•/•/0	Incremental	
	Processing unit (module)	Power electronics	хх%	••/•/⊙ · xxx · xxx	••/•/• · xxx · xxx	•/•/0	Incremental	
Alkaline		Gas treatment	xx%	••/•/⊙ · xxx · xxx	••/•/• · xxx · xxx	•/•/0	Incremental	
¥		Other EPU ¹⁾	xx%	••/•/• · xxx · xxx	••/•/⊙ · xxx · xxx	•/•/0	Incremental	
		Module assembly	xx%	•/•/• · xxx · xxx	••/•/• · xxx · xxx	•/•/0	Incremental	
	ELY system	Others	xx%	•/•/• · xxx · xxx	••/•/o · xxx · xxx	•/•/•	Incremental	

Deep dive on next slides —

¹⁾ EPU = Electrolyzer Processing Unit

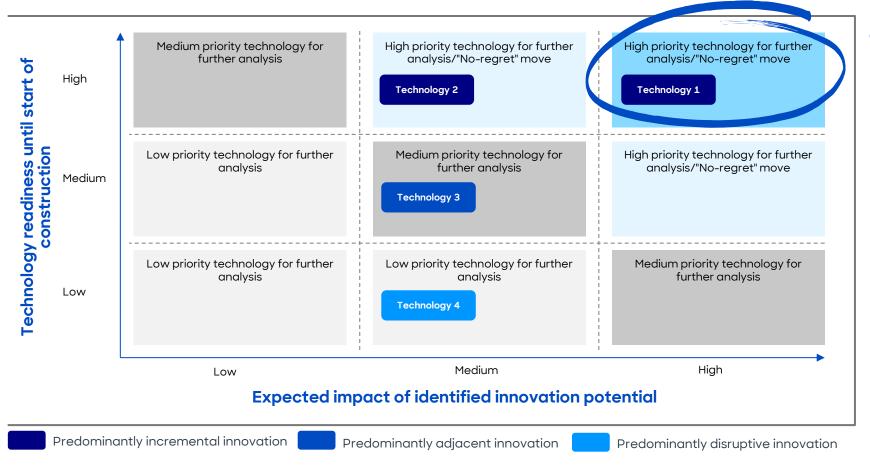
For the cost reduction assessment, key cost reduction levers and required enablers to achieve cost reduction can be analyzed

Cost reduction potential assessment (component level)

Technology & key parts		Key components	% of total costs	Cost reduction levers/Innovation areas	Key required enablers	Likelihood of realization	Expected impact	Cost red. potential
		Diaphragm	xx%	xxx	• xxx • xxx • xxx	•	•	•
zer				xxx	• xxx • xxx • xxx	•	•	•
ctroly		Anode & Cathode	xx%	xxx	• xxx • xxx • xxx	•	•	•
Alkaline electrolyzer	Stack			xxx	• xxx • xxx • xxx	••	•	•
Alko		Frame	xx%	xxx	• xxx • xxx • xxx	•••	•	•
		•••	•••			•	•	•

••• high •• medium •• low

For the efficiency improvement assessment, efficiency levers and enablers for key components can be analyzed


Efficiency improvement assessment (component level)

Techno parts	ology & key	Key components	Efficiency improvement levers/Innovation areas	Key required enablers	Likelihood of realization	Expected impact	Efficiency potential
	zer	Diaphragm	xxx	• xxx • xxx • xxx	•	•	•
zer			xxx	• xxx • xxx • xxx	••	•	•
ectroly	C4 al-	Anode & Cathode	xxx	• xxx • xxx • xxx	•	•	•
Alkaline electrolyzer	Stack		xxx	• xxx • xxx • xxx	••	•	•
		Frame	xxx	• xxx • xxx • xxx	•••	•	•
		•••			•••	•	•

high medium low

After having analyzed all key technologies, they can be prioritized along the two dimensions likelihood of realization & expected impact for decision-making

Outcome of technology scouting

Comments

- The two-dimensional matrix supports the prioritization of all analyzed technologies to facilitate decision-making
- In this illustrative example, Technology 1 would be the most prioritized technology as it has
 - the highest degree of technological readiness and
 - is expected to have the highest impact regarding the innovation potential

Source: Roland Berger Roland Berger | 12

