

The H2V Facility delivers dedicated support to hydrogen practitioners via PDA services, the H2V Knowledge Centre and the H2V Platform

The Hydrogen Valleys Facility

Clean Hydrogen Partnership

Project Development Assistance

Provision of dedicated Project Development Assistance (PDA) for Hydrogen Valleys projects towards Final Investment Decision

H2V Knowledge Centre

Sharing & dissemination of knowledge and provision of capacity building for the broader hydrogen community

H2V Platform

Maintenance & extension of the Hydrogen Valley Platform to enhance its positioning as the global onestop-shop for hydrogen flagship projects

Delivery partners

Aspirational targex

Hydrogen Valleys operational/under construction

This document is part of the H2V Knowledge Centre that offers hydrogen practitioners knowledge material in written and interactive formats

The H2V Knowledge Centre

Structure and scope of the H2V Knowledge Centre

Self-service Knowledge Material

Interactive Formats

Technical

Regulatory

Valley governance

- Knowledge material specifically developed as part of the H2V Facility project
- Links and information to other third-party resources and material
- Webinars with content experts (Roland Berger, Worley and external speakers)
- Project Development
 Assistance experience
 sessions with Hydrogen
 Valley practitioners

Target audience

Hydrogen Valleys

Project developers

National, regional and local authorities

Investors

Other hydrogen practitioners

Disclaimer

This presentation is for informational purposes only and is not offered as professional advice for any specific matter. Professional advice should always be sought before taking any action or refraining from taking any action based on this presentation.

Roland Berger group of companies ("Roland Berger") and the editors and the contributing authors do not assume any responsibility for the completeness and accuracy of the information contained therein and expressly disclaim any and all liability to any person in respect of the consequences of anything done or permitted to be done or omitted to be done wholly or partly in reliance upon the whole or any part of the presentation.

The presentation may contain links to external websites and external websites may link to the presentation. Roland Berger is not responsible for the content or operation of any such external sites and disclaims all liability, howsoever occurring, in respect of the content or operation of any such external websites.

Key objective of this document is to support Hydrogen Valleys with an understanding of the H₂ market dynamics and long-term demand trends

Key objectives and content of this document

Key objectives

Provide H₂ practitioners
with an **up-to-date understanding of the hydrogen market** and
key trends to inform
strategic decisionmaking

Key content

- 1 Net zero scenario
- Political momentum regarding H₂
- Green H₂ project announcements
- Key H₂ project archetypes
- 5 Development of the green H₂ market

Source: Roland Berger
Roland Berger

Understanding current market trends enables Hydrogen Valleys to adapt, position and thrive in a rapidly evolving hydrogen landscape

Relevance of hydrogen market overview for Hydrogen Valley developers

The hydrogen sector is evolving rapidly, creating uncertainty for Hydrogen Valleys ...

- Swift market developments result in unclear planning and investment strategies but reward agile strategies
- 2 Lack of transparency in regional demand and supply dynamics
- 3 Difficulty in anticipating competitor moves and policy shifts

... understanding market trends enables a strategic positioning and long-term planning

Informed **strategic positioning** based on current and emerging trends

Improved investment decisions through data-driven insights

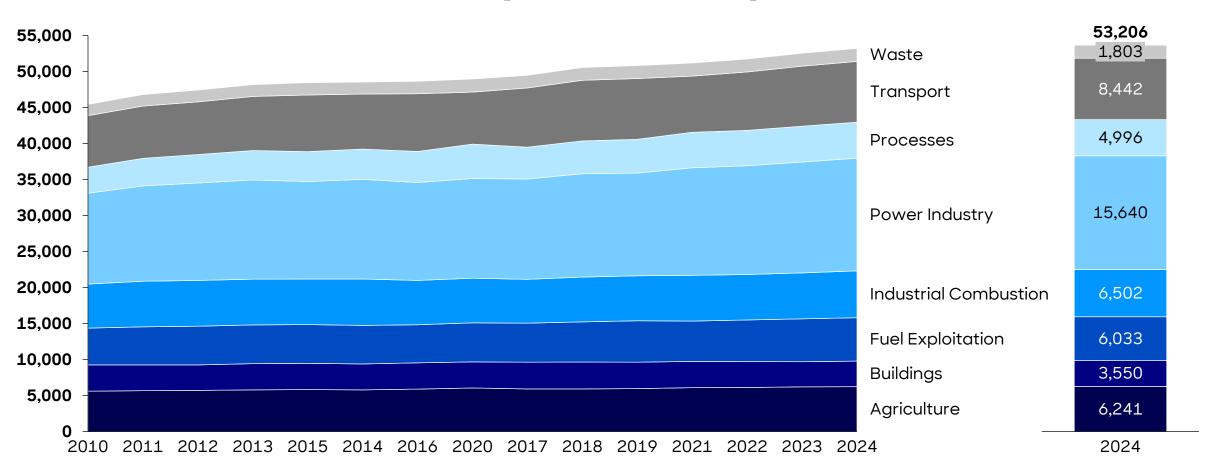
Enhanced adaptability and **resilience** in a shifting hydrogen landscape

Source: Roland Berger | 6

The clean hydrogen market will grow in the coming decades, with Europe emerging as a key demand hub

H₂ market fundamentals and developments: Summary

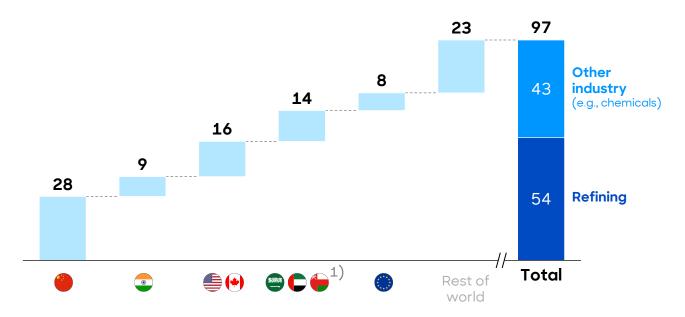
- Net zero scenario: No clean H₂, no "net zero"; to get there, H₂ use will have to grow 4.5x while green H₂ will have to supply the bulk of it, requiring c. 3.3 TW of electrolyzers by 2050 (as per Q4 2023)
- **Political momentum:** As of Q2 2025, governments have announced targets of 260 GW of electrolysis by 2030 and are increasingly adopting demand-side incentives to push clean H₂ use
- Green H₂ project announcements: As of Q2 2025, developers have announced 560 GW of electrolysis projects targeting COD by 2030, up from only a few GW in 2021
- **Key project archetypes:** Small-scale & mobility-focused H_2 projects (<10 MW), on-site industrial H_2 projects (<300 MW) and centralized large-scale H_2 export "giga-projects"
- Development of green H₂ market: Market will evolve over the next decade as demand centers in Europe and East Asia source large volumes from regions with abundant low-cost renewable energy


Source: Roland Berger

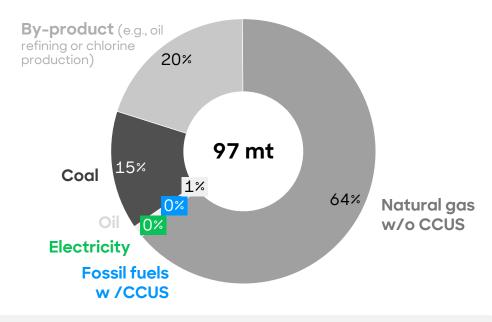
Roland Berger

Global GHG emissions have steadily increased to c. 53.2 bn tons in 2024 – the energy sector is the largest emitter, followed by industry

Global GHG emissions by end-use segments [in m t CO_{2 e}, indicative]



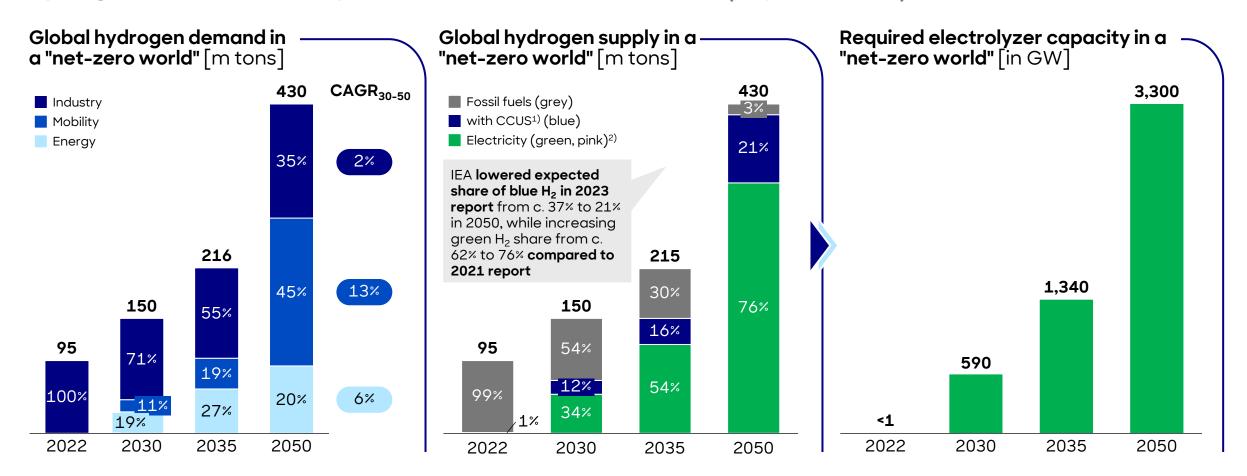
Today, c. 97 m tons of H_2 are used by industry with virtually all produced from fossil fuels (mostly natural gas and coal) - EU with c. 8 m tons H_2 demand


Hydrogen demand and supply today

Hydrogen demand 2024 [in m tons]

- Today demand mainly coming from industry
- While China, India and the US are expected to be self-sufficient going forward, Europe
 as well as East Asia will be a net importer in 2030s

Hydrogen supply 2024 [in m tons]

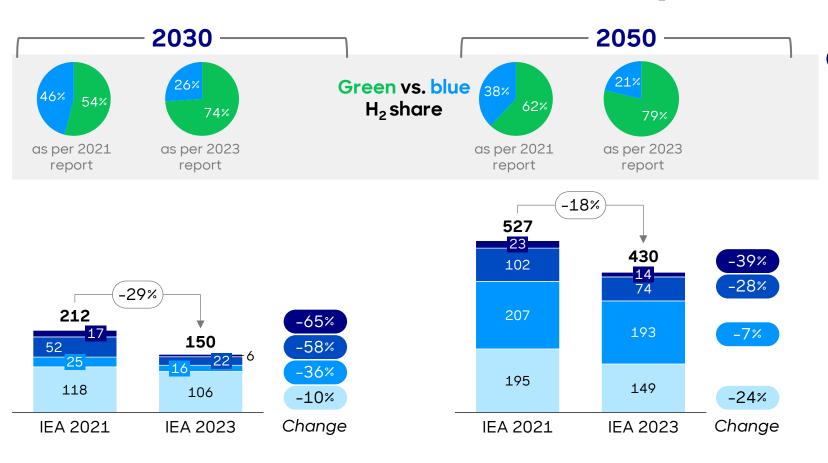


- 99% of hydrogen is currently produced by petrochemical players via fossil routes
- Going forward, production needs to be decarbonized

Source: IEA, Roland Berger 9

Green H2 will have to meet most of decarbonized hydrogen demand, in order to get to "net zero" - More than 1 TW of electrolyzer capacity is required

Hydrogen's role in the IEA's updated Net Zero Emission Scenario (as per Q4 2023)



¹⁾ Carbon Capture, Utilization and Storage; 2) Pink H_2 = H_2 using electricity from nuclear power plants; no split by low-emission electricity source provided by IEA; but, electricity produced by PV, wind & other renewable sources will likely account for significantly largest share of electricity input for H_2 production (in 2050, IEA calculates that only c. 7% of total low-emission electricity production will be produced by nuclear power plants)

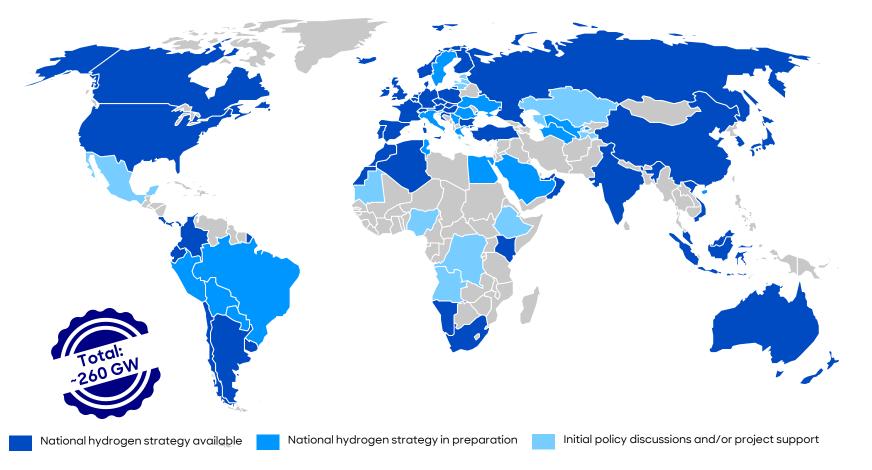
Source: IEA, Roland Berger Roland Berger 10

The IEA's forecast lowers overall hydrogen demand, especially in the energy sector, while projecting growth in industrial and transport applications

Deep dive: Evolution of long-term H₂ IEA demand scenarios [in m tons, all H₂ colours]

Energy (buildings) Energy (power) Mobility Industry

Key observations

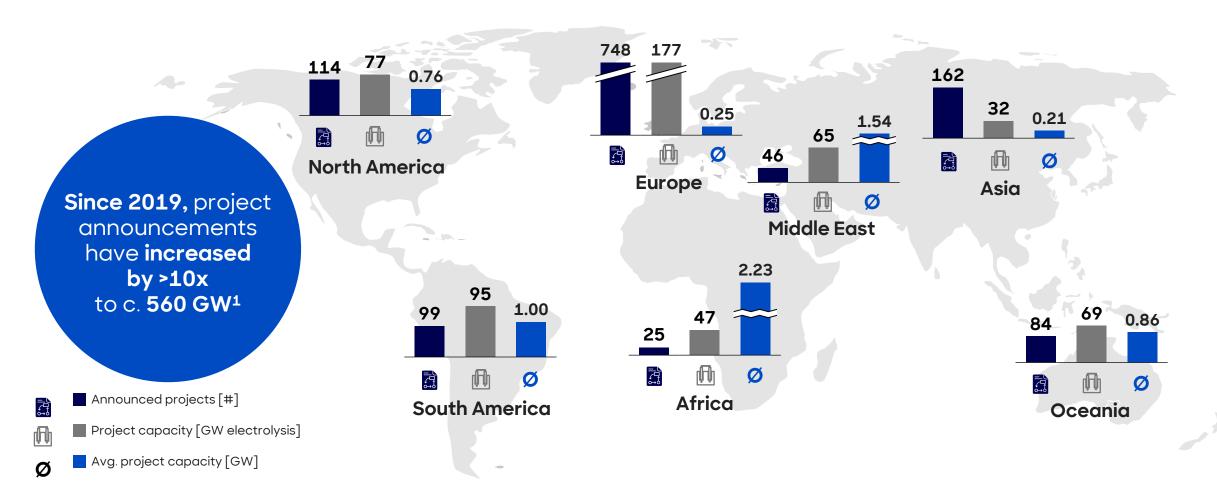

Latest IEA H₂ forecast (2023) changed compared to the 2021 forecast:

- Share of green H₂ in total low-carbon H₂ has been increased, limited role of blue H₂ due to:
- Project size, complexity ("first of a kind")
- Long(er) lead times (than green H₂ projects)
- Challenging project economics, incl. rising project costs, uncertainty on CCS cost & performance, unstable policy environment
- Especially in energy sector, total H₂ demand expectations have been lowered, e.g., due to stronger expected role of electrification

Source: IEA, Roland Berger 11

Governments are pushing hydrogen with national strategies - Big targets for consumption, production, investment and value creation

National hydrogen strategies (as per Q2 2025)


Key observations

- Hydrogen activities are well spread around the globe with major interest being located in Europe, Asia, as well as in the Americas
- 40+ countries have published hydrogen strategies, along with the EU
- Main drivers are GHG emission reduction goals as well as the opportunity for economic growth

¹⁾ Based on DOE Hydrogen Strategy which sets a goal for 10 million tons of clean hydrogen by 2030, electrolyzer capacity depending on utilization rates and efficiency factors; 2) RepowerEU proposed Hydrogen Accelerator: 10 million tons of annual domestic production by 2030 - requires c. 65-100 GW electrolyzer capacity; 3) Until 2040; 4) 15 GW installed by JP companies globally; 5) National target of 5 million tons by 2030

The global green H₂ project landscape is growing stronger than ever: projects of c. 560 GW by '30 announced - >10x increase since 2019

Global announced green hydrogen projects by 2030 (as per mid 2024)

¹⁾ As of June 2024, including green H₂ projects at very preliminary studies or at press announcement stages; some announced green H₂ projects have not yet specified electrolyzer capacity

Three project archetypes are emerging: small-scale local mobility pro-jects, mid-scale industrial decarbonization projects and export-oriented "giga-projects"

Green hydrogen project archetypes

Archetype 1

Small-scale, mobility-driven

- Rationale: pooling demand from mobility applications (truck fleets, bus fleets, etc.), shared use of refueling infrastructure, scaling supply
- Capacity: 5-20 MW ELY (typically grid power, w/ green PPA)
- · Regional focus: EU, Asia
- Key challenges: many stakeholders involved (high complexity against comparatively low H₂ volumes)

Archetype 2

Medium-scale, industry-driven

- Rationale: decarbonizing grey industrial feedstock with green H₂; anchor offtake from petro-chemicals, steel, etc.; mobility off-take as add-on
- Capacity: 20-300 MW ELY (often grid power, w/ green PPA)
- · Regional focus: EU, US, China
- Key challenges: regulation and power sourcing (e.g., EU RED II DA), seamless integration with ind. processes, expansion limits

Archetype 3

Large-scale, supra-regional

- Rationale: Building a local valley with the ultimate ambition to export green molecules, connecting supply and demand across regions
- Capacity: 500+ MW ELY (typically dedicated add. renewables)
- Regional focus: MENA, AU, LA, NA
- Key challenges: regulatory and other enablers for long-term offtake contracts, technology at scale, transportation

Source: Roland Berger Roland Berger

Within 10+ years, clean H₂ will become a globally traded commodity, with the upstream project development industry already maturing

H₂ market development phases

Project landscape

- Focus on single early adopters of green
 H₂ in industry & mobility
- Captive, regional projects with limited role of H₂ transportation
- Strong role of public support: regulation (e.g., quotas) & esp. direct funding

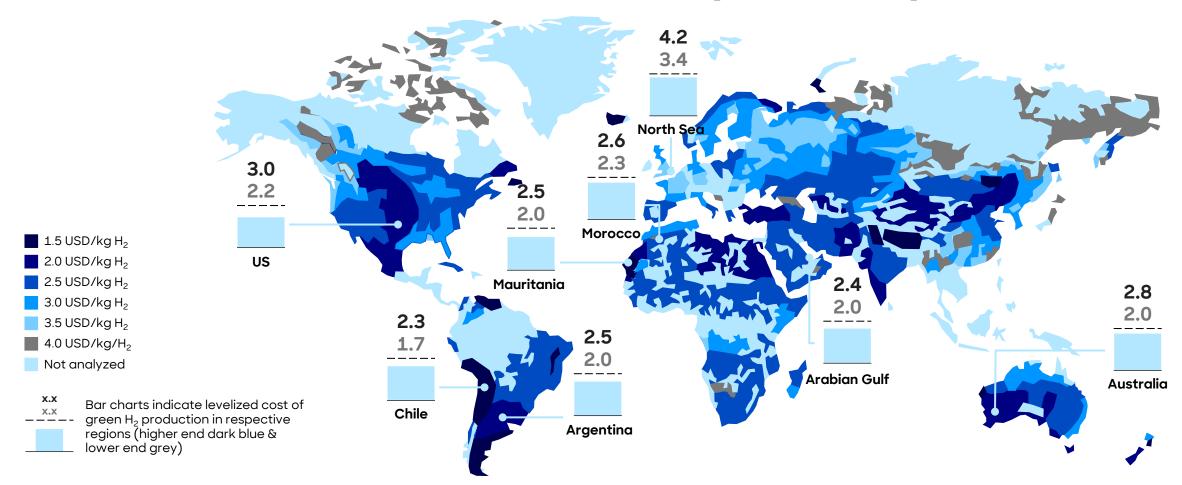
- Phase
 2
 Emerging market
- New H₂ uses with large volumes enter the picture (e.g., steel, NH₃ for shipping)
- Projects get bigger and more int'l, H₂
 transp. grows, incl. flexible carriers
- Continued role of public support, e.g., quotas, CCfDs, carbon pricing

- Phase
 3
 Commodity market
- Global connection of supply & demand centers connected by pipeline network and flexible carriers
- Phase-out of public support schemes, except for fundamental regulation (e.g., quotas, carbon pricing)

Market dynamics

- Access to H₂ mainly to project partners of first-of-kind pilot & lighthouse project
- Captive or project-based OTC market to minimize sales risk (no brokers)
- Preparation of "Guarantees of Origin" (GO) framework for green H₂

Development of low-/zerocarbon H_2 demand over time [indicative]

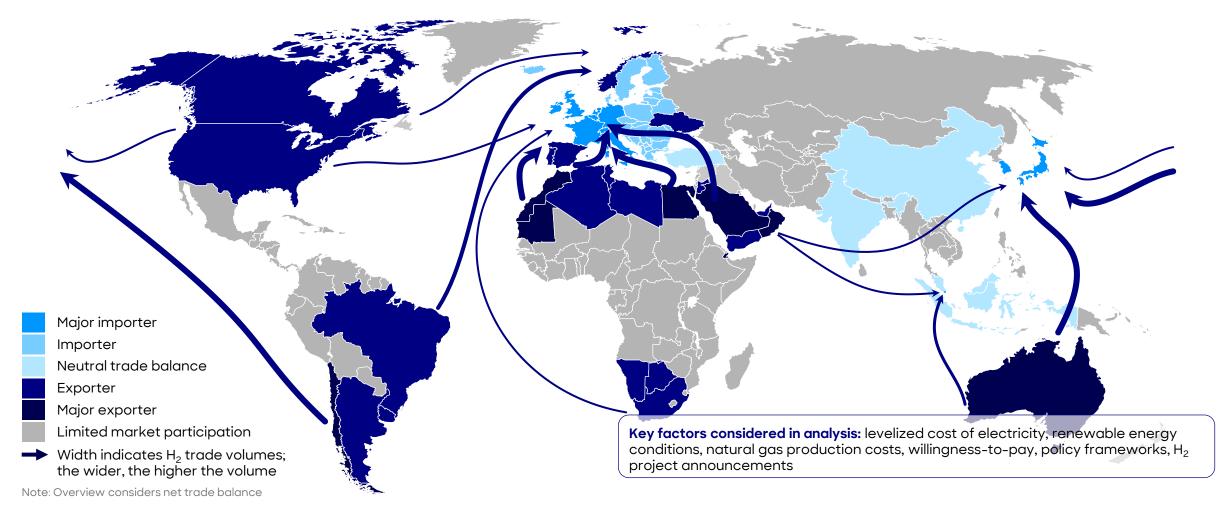

- Formation of H₂ demand nests driven by industrial decarbonization and declining transportation costs
- Only project-based OTC market to minimize sales risk; need for brokers
- Possible use of green derivatives for ammonia, methanol, or e-fuels sooner

- Fixed hydrogen supply chains with corresponding infrastructure
- Liquid commodity market for hydrogen with high demand for brokers / trading
- Emerging trading of GOs

Source: Roland Berger Roland Berger

With the most abundant solar and wind density, the global south can produce the most cost-efficient green H₂

Indicative LCOH in different world regions, excl. transport costs [2035+, USD/kg H_2]¹



¹⁾ As per latest IEA report with following key assumptions: 6% WACC, c. 600 USD / kW ELY Capex, regional solar and wind Capex, optimized mix of wind and solar power depending on region

Source: IEA, Roland Berger | 16

In the long-run, Africa, Australia, Latin America and the Middle East will export H_2 ; Europe and East Asia will be net H_2 importers

Expected global clean H₂ export and import centers [2035+]

